A targeted approach to reducing the health impacts of crop residue burning in India

- Posted in Uncategorized by

To clear the way for planting wheat in November, a farmer in Punjab, India, sets aflame the leftover straw, or stubble, of a harvested rice paddy crop in October. The burning residue fills the air with carbon monoxide, ozone, and fine particulate matter (PM2.5) that will make it harder to breathe for days afterward and for miles around. It’s a scene that’s replicated on about 2 million farms in the Punjab and Haryana states of northwest India every autumn (and every spring after the wheat harvest), raising health risks — particularly of respiratory and cardiovascular diseases  — and premature death rates downwind in India and throughout South Asia.  

To date, government regulations, largely imposed at the state and national level, have been ineffective in curtailing crop residue burning in India. The practice continues apace, driven by the limited economic value of rice and wheat residues, and the ongoing need for cheap, ultrafast disposal of residues between harvesting and planting of the rotating crops. Such attempted bans are also deeply unpopular. A national ban on burning was repealed last year due to pressure from farmers, who see such legislation as further increasing the already-significant economic hardships faced by small-scale landowners.

In search of more effective solutions, a team of researchers at MIT and Harvard University estimated which burning events, in what locations and at what times, produced the greatest increases in population exposure, premature deaths, and economic losses in India during the years 2003-09. Then they quantified how small-scale and targeted actions could reduce air pollution and health risks for the entire population. Their findings appear in the journal Nature Communications.

Based on computer models of the seven-year study period, the researchers attributed between 44,000 and 98,000 PM2.5-exposure-related premature deaths annually to crop residue burning, with 67-90 percent occurring as a result of burning that took place in the Punjab, Haryana, and Uttar Pradesh states. They also found that six districts within Punjab — each with relatively high cultivation of residue-intensive crops and downwind population density — contributed 40 percent of India’s annual air-quality impacts from the practice.

The research team next identified several opportunities to reduce crop residue burning and its attendant health effects. First, if farmers in Punjab were to burn crop residues two hours earlier in the day, they could avert up to 14 percent of air-quality impacts and about 10,000 deaths each year. They could achieve further reductions by adopting rice varieties such as basmati that require less residue burning. Finally, such targeted actions could achieve most of their benefits if adopted in just a few regions, given the large contribution from the aforementioned six districts in Punjab.

“Our findings show that targeted and potentially inexpensive interventions could go a long way toward mitigating the public health impacts of crop residue burning in India,” says Sebastian Eastham, a lead author of the study and a principal research scientist at the MIT Joint Program on the Science and Policy of Global Change. “By focusing on the timing and location of burning for the first time, our study expands decision-makers’ options for reducing health impacts and economic costs to farmers and the general public.”

To produce a comprehensive map of the time and location of crop production and residue burning, the study combined crop residue emissions estimates from the Global Fire Emissions Database version 4.1s (GFEDv4.1s) with district-level crop production data for India. An atmospheric model (GEOS-Chem adjoint) was then used to determine how air quality across India changed in response to residue burning in any single location and at any given time of the year, down to individual hours. Finally, these data, in combination with health and economic impact models, yielded estimates of which burning events, in what locations, and at what times, produce the greatest increases in population exposure, premature mortality, and economic losses.

To build on this study and achieve significant reductions in crop residue burning, the research team envisions a comprehensive cost-benefit analysis of its proposed small-scale interventions along with additional incentives for farmers.

“We hope that our findings can help policymakers find equitable solutions that can be implemented in the near term and help everyone — small-scale, practical changes that can reduce the health impacts of residue burning without imposing undue economic burdens on Indian farmers. Such interventions can then buy time to find more comprehensive solutions,” says Eastham.

The study was funded, in part, by the MIT Tata Center for Technology and Design and by Tata Trusts.

Source: A targeted approach to reducing the health impacts of crop residue burning in India

Looking beyond “technology for technology’s sake”

- Posted in Uncategorized by

Austen Roberson’s favorite class at MIT is 2.S007 (Design and Manufacturing I-Autonomous Machines), in which students design, build, and program a fully autonomous robot to accomplish tasks laid out on a themed game board.

“The best thing about that class is everyone had a different idea,” says Roberson. “We all had the same game board and the same instructions given to us, but the robots that came out of people’s minds were so different.”

The game board was Mars-themed, with a model shuttle that could be lifted to score points. Roberson’s robot, nicknamed Tank Evans after a character from the movie “Surf’s Up,” employed a clever strategy to accomplish this task. Instead of spinning the gears that would raise the entire mechanism, Roberson realized a claw gripper could wrap around the outside of the shuttle and lift it manually.

“That wasn’t the intended way,” says Roberson, but his outside-of-the-box strategy ending up winning him the competition at the conclusion of the class, which was part of the New Engineering Education Transformation (NEET) program. “It was a really great class for me. I get a lot of gratification out of building something with my hands and then using my programming and problem-solving skills to make it move.”

Roberson, a senior, is majoring in aerospace engineering with a minor in computer science. As his winning robot demonstrates, he thrives at the intersection of both fields. He references the Mars Curiosity Rover as the type of project that inspires him; he even keeps a Lego model of Curiosity on his desk. 

“You really have to trust that the hardware you’ve made is up to the task, but you also have to trust your software equally as much,” says Roberson, referring to the challenges of operating a rover from millions of miles away. “Is the robot going to continue to function after we’ve put it into space? Both of those things have to come together in such a perfect way to make this stuff work.”

Outside of formal classwork, Roberson has pursued multiple research opportunities at MIT that blend his academic interests. He’s worked on satellite situational awareness with the Space Systems Laboratory, tested drone flight in different environments with the Aerospace Controls Laboratory, and is currently working on zero-shot machine learning for anomaly detection in big datasets with the Mechatronics Research Laboratory.

Even while tackling these challenging technical problems head-on, Roberson is also actively thinking about the social impact of his work. He takes classes in the Program on Science, Technology, and Society, which has taught him not only how societal change throughout history has been driven by technological advancements, but also how to be a thoughtful engineer in his own career.

“Learning about the social implications of the technology you’re working on is really important,” says Roberson, acknowledging that his work in automation and machine learning needs to address these questions. “Sometimes, we get caught up in technology for technology’s sake. How can we take these same concepts and bring them to people to help in a tangible, physical way? How have we come together as a scientific community to really affect social change, and what can we do in the future to continue affecting that social change?”

Roberson is already working through what these questions mean for him personally. He’s been a member of the National Society of Black Engineers (NSBE) throughout his entire college experience, which includes serving on the executive board for two years. He’s helped to organize workshops focused on everything from interview preparation to financial literacy, as well as social events to build community among members.

“The mission of the organization is to increase the number of culturally responsible Black engineers that excel academically, succeed professionally, and positively impact the community,” says Roberson. “My goal with NSBE was to be able to provide a resource to help everybody get to where they wanted to be, to be the vehicle to really push people to be their best, and to provide the resources that people needed and wanted to advance themselves professionally.”

In fact, one of his most memorable MIT experiences is the first conference he attended as a member of NSBE.

“Being able to see all different these people from all of these different schools able to come together as a family and just talk to each other, it’s a very rewarding experience,” Roberson says. “It’s important to be able to surround yourself with people who have similar professional goals and share similar backgrounds and experiences with you. It’s definitely the proudest I’ve been of any club at MIT.”

Looking toward his own career, Roberson wants to find a way to work on fast-paced, cutting-edge technologies that move society forward in a positive way.

“Whether that be space exploration or something else, all I can hope for is that I’m making an impact, and that I’m making a difference in people’s lives,” says Roberson. “I think learning about space is learning about ourselves as well. The more you can learn about the stuff that’s out there, you can take those lessons to reflect on what’s down here as well.”

Source: Looking beyond “technology for technology’s sake”

Here are all the best Cyber Monday deals we could find[Updated]

- Posted in Uncategorized by
Here are all the best Cyber Monday deals we could find[Updated]

Enlarge (credit: Ars Technica)

Update (11/28/22 12:18 AM ET): Black Friday is over and Cyber Monday deals are keeping the tide flowing today. Many Black Friday deals are still in the mix too. We've added a fair bit of new deals on 4K TVs, video games, and deals under $50, while a few existing sales have gone out of stock. As always, we're checking for if/when they come back in stock and updating our list as worthwhile deals continue to pop up.

Cyber Monday is here, and another wave of deals is washing in. Black Friday, Cyber Monday, and the ensuing days/weeks create a notoriously hectic and overloaded shopping event, but it's also the best time to find year-long low prices on some of our most highly recommended tech. Naturally, we've done all the research and hunting to deliver the best tech deals this event has to offer, and we'll continue to do so as things change shape through Cyber Monday.

The biggest retailers and manufacturers, like AppleMicrosoftAmazonBest BuyTarget, and Walmart, have all posted Cyber Monday deal lists. There's already a lot to highlight for big-ticket items like 4K TVs, Apple iPads, MacBooks, and Surface devices. A range of 4K TVs made our list, from higher-end offerings from Samsung and LG to more reasonably priced options from Vizio, Hisense, TCL, and much more. All of which received strong reviews from trusted sources like Rtings.com, among many others.

Read 4 remaining paragraphs | Comments

Source: Here are all the best Cyber Monday deals we could find[Updated]

A far-sighted approach to machine learning

- Posted in Uncategorized by

Picture two teams squaring off on a football field. The players can cooperate to achieve an objective, and compete against other players with conflicting interests. That’s how the game works.

Creating artificial intelligence agents that can learn to compete and cooperate as effectively as humans remains a thorny problem. A key challenge is enabling AI agents to anticipate future behaviors of other agents when they are all learning simultaneously.

Because of the complexity of this problem, current approaches tend to be myopic; the agents can only guess the next few moves of their teammates or competitors, which leads to poor performance in the long run. 

Researchers from MIT, the MIT-IBM Watson AI Lab, and elsewhere have developed a new approach that gives AI agents a farsighted perspective. Their machine-learning framework enables cooperative or competitive AI agents to consider what other agents will do as time approaches infinity, not just over a few next steps. The agents then adapt their behaviors accordingly to influence other agents’ future behaviors and arrive at an optimal, long-term solution.

This framework could be used by a group of autonomous drones working together to find a lost hiker in a thick forest, or by self-driving cars that strive to keep passengers safe by anticipating future moves of other vehicles driving on a busy highway.

“When AI agents are cooperating or competing, what matters most is when their behaviors converge at some point in the future. There are a lot of transient behaviors along the way that don’t matter very much in the long run. Reaching this converged behavior is what we really care about, and we now have a mathematical way to enable that,” says Dong-Ki Kim, a graduate student in the MIT Laboratory for Information and Decision Systems (LIDS) and lead author of a paper describing this framework.

The senior author is Jonathan P. How, the Richard C. Maclaurin Professor of Aeronautics and Astronautics and a member of the MIT-IBM Watson AI Lab. Co-authors include others at the MIT-IBM Watson AI Lab, IBM Research, Mila-Quebec Artificial Intelligence Institute, and Oxford University. The research will be presented at the Conference on Neural Information Processing Systems.

More agents, more problems

The researchers focused on a problem known as multiagent reinforcement learning. Reinforcement learning is a form of machine learning in which an AI agent learns by trial and error. Researchers give the agent a reward for “good” behaviors that help it achieve a goal. The agent adapts its behavior to maximize that reward until it eventually becomes an expert at a task.

But when many cooperative or competing agents are simultaneously learning, things become increasingly complex. As agents consider more future steps of their fellow agents, and how their own behavior influences others, the problem soon requires far too much computational power to solve efficiently. This is why other approaches only focus on the short term.

“The AIs really want to think about the end of the game, but they don’t know when the game will end. They need to think about how to keep adapting their behavior into infinity so they can win at some far time in the future. Our paper essentially proposes a new objective that enables an AI to think about infinity,” says Kim.

But since it is impossible to plug infinity into an algorithm, the researchers designed their system so agents focus on a future point where their behavior will converge with that of other agents, known as equilibrium. An equilibrium point determines the long-term performance of agents, and multiple equilibria can exist in a multiagent scenario. Therefore, an effective agent actively influences the future behaviors of other agents in such a way that they reach a desirable equilibrium from the agent’s perspective. If all agents influence each other, they converge to a general concept that the researchers call an “active equilibrium.”

The machine-learning framework they developed, known as FURTHER (which stands for FUlly Reinforcing acTive influence witH averagE Reward), enables agents to learn how to adapt their behaviors as they interact with other agents to achieve this active equilibrium.

FURTHER does this using two machine-learning modules. The first, an inference module, enables an agent to guess the future behaviors of other agents and the learning algorithms they use, based solely on their prior actions.

This information is fed into the reinforcement learning module, which the agent uses to adapt its behavior and influence other agents in a way that maximizes its reward.

“The challenge was thinking about infinity. We had to use a lot of different mathematical tools to enable that, and make some assumptions to get it to work in practice,” Kim says.

Winning in the long run

They tested their approach against other multiagent reinforcement learning frameworks in several different scenarios, including a pair of robots fighting sumo-style and a battle pitting two 25-agent teams against one another. In both instances, the AI agents using FURTHER won the games more often.

Since their approach is decentralized, which means the agents learn to win the games independently, it is also more scalable than other methods that require a central computer to control the agents, Kim explains.

The researchers used games to test their approach, but FURTHER could be used to tackle any kind of multiagent problem. For instance, it could be applied by economists seeking to develop sound policy in situations where many interacting entitles have behaviors and interests that change over time.

Economics is one application Kim is particularly excited about studying. He also wants to dig deeper into the concept of an active equilibrium and continue enhancing the FURTHER framework.

This research is funded, in part, by the MIT-IBM Watson AI Lab.

Source: A far-sighted approach to machine learning

Honoring Salvador Luria, longtime MIT professor and founding director of the MIT Center for Cancer Research

- Posted in Uncategorized by

On Oct. 26, the Koch Institute for Integrative Cancer Research at MIT and the MIT Press Bookstore co-hosted a special event launching the new biography “Salvador Luria: An Immigrant Biologist in Cold War America,” by Rena Selya. The book explores the life of longtime MIT professor Salvador Luria (1912–1991), whose passion for science was equaled by his commitment to political engagement in Cold War America.

Luria was born in Italy, where the Fascists came to power when he was 10. He left Italy for France due to the antisemitic Race Laws of 1938, and then fled as a Jewish refugee from Nazi Europe, making his way to the United States. Once an American citizen, Luria became a grassroots activist on behalf of civil rights, labor representation, nuclear disarmament, and American military disengagement from the Vietnam and Gulf wars. Luria joined the MIT faculty in 1960 and was later the founding director of the MIT Center for Cancer Research (CCR), which is now the Koch Institute. Throughout his life he remained as passionate about his engagement with political issues as about his science, and continued to fight for peace and freedom until his death.

As inaugural director of the CCR, Luria secured status and funding as a National Cancer Institute basic cancer center to embark on what were then the vast unknowns of cancer biology, oversaw the physical transformation of a former chocolate factory into a research facility, recruited brilliant young scientists to form its founding faculty, and helped foster a culture of scientific rigor, innovation, and excellence that ultimately helped set the standard for the field.

MIT Institute Professor Philip Sharp and Daniel K. Ludwig Professor for Cancer Research Richard Hynes, both founding faculty at the CCR, participated in the special event. Speaking of the center’s earliest days, Hynes explained, “There was an awful lot of cooperation, which was key in the success of this institution. I credit that to Salva and David [Baltimore] in particular. And it’s continued. Because when you grow up in that sort of environment you learn to repeat it.” The discussion was moderated by Deborah Douglas, director of collections and curator, science and technology at the MIT Museum. 

Blacklisted from federal funding review panels but awarded a Nobel Prize for his research on bacteriophages, Luria was as much an activist as a scientist. In this first full-length biography of Luria, Selya draws on extensive archival research; interviews with Luria's family, colleagues, and students; and FBI documents obtained through the Freedom of Information Act to create a compelling portrait of a man committed to both science and society.

The event was fittingly held in the Salvador E. Luria Auditorium at the Koch Institute. Quoting Zella Hurwitz Luria, Luria’s wife, Selya said, “‘Let us celebrate Salva’s life, his humanity, his struggle for understanding life and its biophysical basis, his sense of deep and personal fulfillment at having helped to build what he believed to be the best biology department in the country, his driving need to see justice done, his struggle for a peaceful, democratic world, his real interest in knowing people unlike himself and his love of his family, friends and, coworkers.’ More than 30 years later, it is an honor and pleasure for me to do just that here in the Salvador E. Luria Auditorium.”

Source: Honoring Salvador Luria, longtime MIT professor and founding director of the MIT Center for Cancer Research

3 Questions: Looking to Artemis I for a return to the moon

- Posted in Uncategorized by

On Nov. 16, NASA successfully launched the Artemis I mission after several launch delays. Artemis I is an uncrewed test flight featuring a Space Launch System (SLS) rocket that will send the Orion spacecraft around the moon and back to test the system and hardware extensively before future flights with astronauts.

The first of several missions, Artemis I will pave the way for subsequent missions with the ultimate goal of establishing the first long-term human-robotic presence on and around the moon to strengthen international and commercial collaboration. So far, a total of seven astronauts with ties to MIT — including Raja Chari SM ’01, Woody Hoburg ’08, Jasmin Moghbeli ’05, and Kate Rubins in 2020 and Marcos Berríos ’06, Christina Birch PhD ’15, and Christopher Williams PhD ’12 in 2021 — have been named to the Artemis program. With the partnerships and knowledge gained from Artemis, NASA will look to the future of human space exploration — Mars.  

Here, Olivier de Weck and Thomas "Joey" Murphy discuss new features of the Artemis launch system, the process of planning (and sometimes re-planning) such a major mission launch, and the overall impact of the Artemis program on space exploration. De Weck is the Apollo Program Professor of Astronautics and Engineering Systems in the MIT Department of Aeronautics and Astronautics (AeroAstro) and editor-in-chief of the Journal of Spacecraft and Rockets, while Murphy is a PhD student and rocket launch enthusiast working with Kerri Cahoy, professor of aeronautics and astronautics in AeroAstro and associate editor of the Journal of Spacecraft and Rockets in MIT’s STAR Lab.

Q: What are key differences between Artemis I and previous generations of launch vehicles we used to get to the moon, and what are some of the new features and capabilities that have the space community excited for this mission? 

Murphy: There have only ever been two launch vehicles capable of launching humans to the moon. The previous two were the Saturn V, and the N1, which was the Soviet attempt to reach the moon. The N1 attempted to launch four times (without crew), all of which ended in catastrophe. Artemis I will be flying on the Space Launch System (SLS), which has been in development for about a decade. One of the key differences in the new approach to the moon is that the Saturn V flew fully self-contained missions. They put a command module (the main space capsule), service module (fuel tank, engine, and other equipment), and lunar module (the lander) all on one rocket. This trio traveled to the moon, did the landing, and finished with reentry at Earth. The Artemis program is different. Artemis relies on the Lunar Gateway, which is essentially a small space station in orbit around the moon. Before the astronauts leave Earth, Gateway will be waiting up there, with the lander module (a modified SpaceX Starship) docked to the station. This means all that needs to launch on SLS is the Orion capsule with the crew inside. Because they don't need to bring the lander with them, a larger quantity of useful equipment can be brought along. Orion supports a crew of four, compared to Apollo's max crew size of three. The Artemis I mission is primarily a test of the SLS rocket and the Orion capsule, to make sure they can successfully make the journey to the moon and back. Artemis II, scheduled for 2024, will add astronauts, who will fly around the moon, but not land on it, before returning, followed by the Artemis III mission. 

De Weck: The correct comparison for the SLS is the now-retired Saturn V rocket, which was developed under the Apollo program and active between 1967-73. Here are some comparisons in terms of numbers: height, 363 feet (Saturn V) versus 322 feet (SLS block 1, then grows to 365 feet); payload to low Earth orbit, 310,000 pounds (Saturn V) versus 209,000 pounds (SLS Block 1, then grows to 290,000 pounds); and then there is the fact that the first stage of Saturn V used RP-1 (kerosene) and liquid oxygen (LOX), versus cryogenic hydrogen (LH2) and LOX for the SLS. In terms of ultimate capability, the SLS Block 2 and Saturn V are very comparable. The difference is that Saturn V was a clean-sheet design and SLS reuses a lot of space shuttle hardware, including the solid booster segments (five versus four), the main engines RS-25, as well as the design of the external fuel tank. In retrospect, we estimated that the congressionally mandated reuse of shuttle hardware increased systems engineering effort by 43 percent compared to a clean-sheet design. So, personally, I would have preferred to see a new rocket design, instead of mandated reuse of 1970s-level technology. 

Q: What are some of the factors considered when weighing whether to delay a launch attempt?

De Weck: There are essentially two major drivers of launch delay: (1) technical problems with the rocket, of which the hydrogen leaks, particularly at the fill point interface between the first stage and the launch tower, are the most prominent. Hydrogen is very volatile and difficult to contain. Already, the shuttle program has frequent delays due to hydrogen leakage problems. And (2) the weather-related delays. The latest example is Hurricane Ian in Florida, where the rocket had to be rolled into the Vertical [Vehicle] Assembly Building. All this reminds us that there is nothing “routine” about safely launching large rockets. It's a large collective effort, and each rocket has its own personality and idiosyncrasies. 

Murphy: If NASA sees any reason to believe the mission won’t go completely to plan, they will cancel a launch attempt. Any launch failure is an extremely expensive setback — plus the work that will go into resolving the failure and making sure it never happens again on a future flight. SLS is unlikely to fly more than 10 times, ever, so we definitely want to make the most of every flight it takes. With this rocket, even more than every other rocket, there really is no room for error. With Artemis I, the issues we’ve been seeing have been primarily related to hydrogen leaks. The rocket is fueled with liquid hydrogen, which is the most efficient chemical to use as rocket fuel. The problem with it is that hydrogen is an extremely small molecule, which means that it’s very difficult to keep contained. If you put hydrogen in a steel vessel, it can literally squeeze between the atoms of the metal. Even the smallest of microscopic holes will result in a hydrogen leak. These are the main issues SLS has been seeing in the recent launch attempts and are why the rocket didn’t launch in early September. NASA has been making adjustments to the rocket to stop the hydrogen leaking, and the leaks seem to be solved now. One of the issues they are now running into is the Flight Termination System (FTS) — this is a system of explosives strapped to the rocket, so that if the mission goes wrong in-flight, the rocket will self-destruct, to prevent any danger to people on the ground. Because this system is so critical and sensitive, it’s only certified for a few weeks. If SLS continues to sit on the launch pad, the FTS can “expire,” meaning they would need to replace it. We unfortunately end up in a system where launch delays can cause more launch delays. 

Q: What can we expect to learn from this mission and why is it an exciting milestone for human exploration/space transportation? 

De Weck: This mission is essentially a dress rehearsal for the first human mission around the moon with Artemis II. In Artemis I, the Orion capsule does not house human astronauts, but instrumented mannequins to make sure the life support system functions as planned. This is a “slingshot” mission for about 35 days where the Orion capsule will leave Earth's gravity, swing around the moon in a highly elliptic trajectory, and will then return to Earth and splash down in the Pacific Ocean in a controlled manner. It is noteworthy that this mission is significantly longer than an Apollo mission where astronauts took about 10-12 days for the return trip to the moon. 

Murphy: The most important thing we’ll learn about this system is whether SLS is fit for launching astronauts. The astronauts for the Artemis II mission have not yet been selected, but when they are, they will rest assured that the rocket they’re riding has had its design validated by the Artemis I mission. Additionally, Artemis I carries 10 CubeSats on board as secondary, ride-along payloads, which will all study various aspects of the environment around the moon. This mission establishes the groundwork for our return to the moon, by proving that the last 10 years of development on the SLS rocket have all culminated in a vehicle which is ready for prime time. 

This article was updated Nov. 16 to reflect the successful launch of Artemis I.

Source: 3 Questions: Looking to Artemis I for a return to the moon

Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

- Posted in Uncategorized by

Nonabah Lane, a Navajo educator and environmental sustainability specialist with numerous MIT ties to MIT, passed away in October. She was 46.

Lane had recently been an MIT Media Lab Director’s Fellow; MIT Solve 2019 Indigenous Communities Fellow; Department of Urban Studies and Planning guest lecturer and community partner; community partner with the PKG Public Service Center, Terrascope, and D-Lab; and a speaker at this year’s MIT Energy Week.

Lane was a passionate sustainability specialist with experience spearheading successful environmental civic science projects focused in agriculture, water science, and energy. Committed to mitigating water pollutants and environmental hazards in tribal communities, she held extensive knowledge of environmental policy and Indigenous water rights. 

Lane’s clans were Ta’neezahnii (Tangled People), born for Tł’izíłání (Manygoats People), and her maternal grandfathers are the Kiiyaa’aanii (Towering House People), and paternal grandfathers are Bįįh Bitoo’nii (Deer Spring People).

Lane was a member of the Navajo Nation, Nenahnezad Chapter. At Navajo Power, she worked as the lead developer for solar and energy storage projects to benefit tribal communities on the Navajo Nation and other tribal nations in New Mexico. Prior to joining Navajo Power, Lane co-founded Navajo Ethno-Agriculture, a farm that teaches Navajo culture through traditional farming and bilingual education. Lane also launched a campaign to partner with local Navajo schools and tribal colleges to create their own water-testing capabilities and translate data into information to local farmers.

“I had the opportunity to collaborate closely with Nonabah on a range of initiatives she was championing on energy, food, justice, water, Indigenous leadership, youth STEM, and more. She was innovative, entrepreneurial, inclusive, heartfelt, and positively impacted MIT on every visit to campus. She articulated important things that needed saying and expanded people's thinking constantly. We will all miss her insights and teamwork,” says Megan Smith ’86, SM ’88, MIT Corporation life member; third U.S. chief technology officer and assistant to the president in the Office of Science and Technology Policy; and founder and CEO of shift7.

In March 2019, Lane and her family — parents Gloria and Harry and brother Bruce — welcomed students and staff of the MIT Terrascope first-year learning community to their farm, where they taught unique, hands-on lessons about traditional Diné farming and spirituality. She then continued to collaborate with Terrascope, helping staff and students develop community-based work with partners in Navajo Nation. 

Terrascope associate director and lecturer Ari Epstein says, "Nonabah was an inspiring person and a remarkable collaborator; she had a talent for connecting and communicating across disciplinary, organizational, and cultural differences, and she was generous with her expertise and knowledge. We will miss her very much."

Lane came to MIT in May 2019 for the MIT Solve Indigenous Communities Fellowship and Solve at MIT event, representing Navajo Ethno-Agriculture with her mother, Gloria Lane, and brother, Bruce Lane, and later serving as a Fellow Leadership Group member. 

“Nonabah was an incredible individual who worked tirelessly to better all of her communities, whether it was back home on the Navajo Nation, here at MIT Solve, or supporting her family and friends,” says Alex Amouyel, executive director of MIT Solve. “More than that, Nonabah was a passionate mentor and caring friend of so many, carefully tending the next generation of Indigenous innovators, entrepreneurs, and change-makers. Her loss will be felt deeply by the MIT community, and her legacy of heartfelt service will not be forgotten.”

She continued to be heavily involved across the MIT campus — named as a 2019 Media Lab Director’s Fellow, leading a workshop at the 2020 MIT Media Lab Festival of Learning on modernizing Navajo foods using traditional food science and cultural narrative, speaking at the 2022 MIT Energy Conference “Accelerating the Clean Energy Transition,” and taking part in the MIT Center for Bits and Atoms (CBA) innovation weekly co-working groups for Covid-response related innovations. 

“My CBA colleagues and I enjoyed working with Nonabah on rapid-prototyping for the Covid response, on expanding access to digital fabrication, and on ambitious proposals for connecting emerging technology with Indigenous knowledge,” says Professor Neil Gershenfeld, director, MIT Center for Bits and Atoms.

Nonabah also guest lectured for the MIT Department of Urban Studies and Planning’s Indigenous Environmental Planning class in Spring 2022. Professors Lawrence Susskind and Gabriella Carolini and teaching assistant Dení López led the class in cooperation with Elizabeth Rule, Chickasaw Nation member and professor at American University. 

Carolini shares, on behalf of Susskind and the class, “During this time, our teaching team and students from a broad range of fields at MIT had the deep honor of learning from and with the inimitable Nonabah Lane. Nonabah was a dedicated and critical partner to our class, representing in this instance Navajo Power — but of course, also so much more. Her broad experiences and knowledge — working with fellow Navajo members on energy and agriculture sovereignty, as well as in advancing entrepreneurship and innovation — reflected the urgency Nonabah saw in meeting the challenges and opportunities for sustainable and equitable futures in Navajo nation and beyond. She was a pure life force, running on all fires, and brought to our class a dedicated drive to educate, learn, and extend our reference points beyond current knowledge frontiers.” 

Three MIT students — junior Isabella Gandara, Alexander Gerszten ’22, and Paul Picciano MS ’22 — who worked closely with Lane on a project with Navajo Power, recalled how she shared herself with them in so many ways, through her truly exceptional work ethic, stories about herself and her family, and the care and thought that she put into her ventures. They noted there was always something new to feel inspired by when in her presence. 

“The PKG Public Service Center mourns the passing of Nonabah Lane. Navajo Ethno-Agriculture is a valued PKG Center partner that offers MIT undergraduate students the opportunity to support community-led projects with the Diné Community on Navajo Nation. Nonabah inspired students to examine broad social and technical issues that impact Indigenous communities in Navajo Nation and beyond, in many cases leaving an indelible mark on their personal and professional paths,” says Jill S. Bassett, associate dean and director of the PKG Public Service Center.

Lane was a Sequoyah Fellow of the American Indian Science and Engineering Society (AISES) and remained actively engaged in the AISES community by mentoring young people interested in the fields of science, engineering, agriculture, and energy. Over the years, Lane collaborated with leaders across tribal lands and beyond on projects related to agriculture, energy, sustainable chemicals, and finance. Lane had an enormous positive impact on many through her accomplishments and also the countless meaningful connections she helped to form among people in diverse fields.

Donations may be made to a memorial fund organized by Navajo Power, PBC in honor of Nonabah Lane, in support of Navajo Ethno-Agriculture, the Native American nonprofit she co-founded and cared deeply for.

Source: Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

Top 10 AI Content Generator & Writer Tools in 2022

- Posted in Uncategorized by

Are you looking for a way to create content that is both effective and efficient? If so, then you should consider using an AI content generator. AI content generators are a great way to create content that is both engaging and relevant to your audience. 

There are a number of different AI content generator tools available on the market, and it can be difficult to know which one is right for you. To help you make the best decision, we have compiled a list of the top 10 AI content generator tools that you should use in 2022.

So, without further ado, let’s get started!

1. Jasper Ai(Formerly known as Jarvis)

jasper content generator tool

With new heat treatment, 3D-printed metals can withstand extreme conditions

- Posted in Uncategorized by

A new MIT-developed heat treatment transforms the microscopic structure of 3D-printed metals, making the materials stronger and more resilient in extreme thermal environments. The technique could make it possible to 3D print high-performance blades and vanes for power-generating gas turbines and jet engines, which would enable new designs with improved fuel consumption and energy efficiency.

Today’s gas turbine blades are manufactured through conventional casting processes in which molten metal is poured into complex molds and directionally solidified. These components are made from some of the most heat-resistant metal alloys on Earth, as they are designed to rotate at high speeds in extremely hot gas, extracting work to generate electricity in power plants and thrust in jet engines.

There is growing interest in manufacturing turbine blades through 3D-printing, which, in addition to its environmental and cost benefits, could allow manufacturers to quickly produce more intricate, energy-efficient blade geometries. But efforts to 3D-print turbine blades have yet to clear a big hurdle: creep.

In metallurgy, creep refers to a metal’s tendency to permanently deform in the face of persistent mechanical stress and high temperatures. While researchers have explored printing turbine blades, they have found that the printing process produces fine grains on the order of tens to hundreds of microns in size — a microstructure that is especially vulnerable to creep.

“In practice, this would mean a gas turbine would have a shorter life or less fuel efficiency,” says Zachary Cordero, the Boeing Career Development Professor in Aeronautics and Astronautics at MIT. “These are costly, undesirable outcomes.”

Cordero and his colleagues found a way to improve the structure of 3D-printed alloys by adding an additional heat-treating step, which transforms the as-printed material’s fine grains into much larger “columnar” grains — a sturdier microstructure that should minimize the material’s creep potential, since the “columns” are aligned with the axis of greatest stress. The researchers say the method, outlined today in Additive Manufacturing, clears the way for industrial 3D-printing of gas turbine blades.

“In the near future, we envision gas turbine manufacturers will print their blades and vanes at large-scale additive manufacturing plants, then post-process them using our heat treatment,” Cordero says. “3D-printing will enable new cooling architectures that can improve the thermal efficiency of a turbine, so that it produces the same amount of power while burning less fuel and ultimately emits less carbon dioxide.”

Cordero’s co-authors on the study are lead author Dominic Peachey, Christopher Carter, and Andres Garcia-Jimenez at MIT, Anugrahaprada Mukundan and Marie-Agathe Charpagne of the University of Illinois at Urbana-Champaign, and Donovan Leonard of Oak Ridge National Laboratory.

Triggering a transformation

The team’s new method is a form of directional recrystallization — a heat treatment that passes a material through a hot zone at a precisely controlled speed to meld a material’s many microscopic grains into larger, sturdier, and more uniform crystals.

Directional recrystallization was invented more than 80 years ago and has been applied to wrought materials. In their new study, the MIT team adapted directional recrystallization for 3D-printed superalloys.

The team tested the method on 3D-printed nickel-based superalloys — metals that are typically cast and used in gas turbines. In a series of experiments, the researchers placed 3D-printed samples of rod-shaped superalloys in a room-temperature water bath placed just below an induction coil. They slowly drew each rod out of the water and through the coil at various speeds, dramatically heating the rods to temperatures varying between 1,200 and 1,245 degrees Celsius.

They found that drawing the rods at a particular speed (2.5 millimeters per hour) and through a specific temperature (1,235 degrees Celsius) created a steep thermal gradient that triggered a transformation in the material’s printed, fine-grained microstructure.

“The material starts as small grains with defects called dislocations, that are like a mangled spaghetti,” Cordero explains. “When you heat this material up, those defects can annihilate and reconfigure, and the grains are able to grow. We’re continuously elongating the grains by consuming the defective material and smaller grains — a process termed recrystallization.”

Creep away

After cooling the heat-treated rods, the researchers examined their microstructure using optical and electron microscopy, and found that the material’s printed microscopic grains were replaced with “columnar” grains, or long crystal-like regions that were significantly larger than the original grains.

“We’ve completely transformed the structure,” says lead author Dominic Peachey. “We show we can increase the grain size by orders of magnitude, to massive columnar grains, which theoretically should lead to dramatic improvements in creep properties.”

The team also showed they could manipulate the draw speed and temperature of the rod samples to tailor the material’s growing grains, creating regions of specific grain size and orientation. This level of control, Cordero says, can enable manufacturers to print turbine blades with site-specific microstructures that are resilient to specific operating conditions.

Cordero plans to test the heat treatment on 3D-printed geometries that more closely resemble turbine blades. The team is also exploring ways to speed up the draw rate, as well as test a heat-treated structure’s resistance to creep. Then, they envision that the heat treatment could enable the practical application of 3D-printing to produce industrial-grade turbine blades, with more complex shapes and patterns.

“New blade and vane geometries will enable more energy-efficient land-based gas turbines, as well as, eventually, aeroengines,” Cordero notes. “This could from a baseline perspective lead to lower carbon dioxide emissions, just through improved efficiency of these devices.”

This research was supported, in part, by the U.S. Office of Naval Research.

Source: With new heat treatment, 3D-printed metals can withstand extreme conditions

Three from MIT named 2023 Rhodes Scholars

- Posted in Uncategorized by

Jack Cook, Matthew Kearney, and Jupneet Singh have been selected for the 2023 cohort of the prestigious Rhodes Scholarship program. They will begin fully funded postgraduate studies at Oxford University in the U.K. next fall. Each year, Rhodes awards 32 scholarships to U.S. citizens plus additional scholarships for citizens from non-U.S. constituencies.

The students were supported by Associate Dean Kim Benard and the Distinguished Fellowships team in Career Advising and Professional Development, and received additional mentorship from the Presidential Committee on Distinguished Fellowships.

“Our students have worked incredibly hard throughout this process,” says Professor Tamar Schapiro, who co-chairs the committee along with Professor Will Broadhead. “They have been challenged to think deeply about what they want to do and about who they want to be. They have learned to communicate their values and goals in powerful ways. And they have developed confidence presenting themselves to others. We are thrilled that so many of them were recognized this year, as finalists and as winners.” 

Jack Cook ’22

Jack Cook is a MEng student from New York City who recently graduated with a major in computer science and a minor in brain and cognitive sciences. At Oxford, he plans to pursue an MSc in the social science of the internet and an MSc in evidence-based social intervention and policy evaluation. In the future, he plans to apply his technical skills toward solving problems involving misinformation.

As an undergraduate at MIT, Cook was lead author on “There’s Always a Bigger Fish,” a research paper from Mengjia Yan’s lab that demonstrates how machine learning can be weaponized to extract sensitive information from applications such as a web browser. His work on this project won him MIT’s 2022 Robert M. Fano UROP Award. For his master’s thesis, in partnership with Lahey Hospital, Jack is building a digital cognitive assessment for diagnosing patients with neurodegenerative diseases.

Cook also leads natural language processing initiatives at The New York Times R&D, where he built a system that answers questions from readers about breaking news in real time. As a high school student, he was on the founding team of Mixer, a startup focusing on low-latency live-streaming that was acquired by Microsoft in 2016.

Cook was also director of HackMIT, MIT’s premier annual 1,000-person hackathon, for two years. For HackMIT’s first virtual event in September 2020, he led the development of a 3D virtual platform on which hackers could “walk around” and interact with each other while participating remotely.

Matthew Kearney

Matt Kearney from Austin, Texas, is a senior majoring in both electrical engineering and computer science and philosophy. At Oxford, he will pursue an MSc in research in statistics. His goal is to redesign AI technologies and practices to both address their harms and reimagine them as tools for solutions to pressing societal issues such as climate change and economic inequality.

At MIT, Kearney has researched theoretical quantum computing with the Quanta Research Group, computer vision for 3D scene understanding with the Computer Science and Artificial Intelligence Laboratory (CSAIL), probabilistic climate downscaling with the Human Systems Lab, and explainability methods for natural language models with CSAIL. He also interned with Argo AI, an autonomous vehicle company, and Google X, the moonshot factory of Google.

Kearney ran on the MIT Cross Country and Track and Field teams and served as a captain for three years. He also co-founded a project in 2020 with the goal of focusing individual efforts on the most effective solutions to climate change. He and his co-founder were awarded the PKG Fellowship and the IDEAS Fellowship to support this work. Additionally, as part of his studies in the humanities, he was selected as an MIT Burchard Scholar.

In his spare time, Kearney loves spontaneously singing, cooking elaborate meals, and absolutely anything in the outdoors.

Jupneet Singh

Jupneet Singh is a senior from Somis, California, majoring in chemistry with a flex in biomedical engineering and minoring in history. As a Rhodes Scholar at Oxford, she intends to study for an MSc in evidence-based social intervention and policy evaluation. Following Rhodes, she plans to attend medical school and then complete residency as an active-duty Air Force Captain.

Singh’s career goals include serving as a trauma surgeon in the Air Force, and then entering the United States Public Health Commissioned Corps to advocate for the representation of minorities and culturally adaptive practices in health care. She currently holds leadership positions in Air Force ROTC, MIT Mock Trial, and Project Sunshine MIT, and is also involved with the PKG Center. She conducts research in the Shalek Lab studying fatty liver disease, and she has also worked in the Nolan Lab on natural products research.  

This past summer, Singh worked in de-addiction centers in India and had an abstract accepted to the American College of Surgeons Southern California Conference. She has worked in California at the Ventura County Family Justice Center and Ventura County Medical Center Trauma Center and published a paper as first author in The American Surgeon. Singh founded a program, Pathways to Promise, to support the health of children in Ventura affected by domestic violence, and has received four fellowships to support it.

Source: Three from MIT named 2023 Rhodes Scholars

Page 1 of 2

Category

Tags