3 Questions: Leveraging carbon uptake to lower concrete’s carbon footprint

- Posted in Uncategorized by

To secure a more sustainable and resilient future, we must take a careful look at the life cycle impacts of humanity’s most-produced building material: concrete. Carbon uptake, the process by which cement-based products sequester carbon dioxide, is key to this understanding.

Hessam AzariJafari, the MIT Concrete Sustainability Hub’s deputy director, is deeply invested in the study of this process and its acceleration, where prudent. Here, he describes how carbon uptake is a key lever to reach a carbon-neutral concrete industry.

Q: What is carbon uptake in cement-based products and how can it influence their properties?

A: Carbon uptake, or carbonation, is a natural process of permanently sequestering CO2 from the atmosphere by hardened cement-based products like concretes and mortars. Through this reaction, these products form different kinds of limes or calcium carbonates. This uptake occurs slowly but significantly during two phases of the life cycle of cement-based products: the use phase and the end-of-life phase.

In general, carbon uptake increases the compressive strength of cement-based products as it can densify the paste. At the same time, carbon uptake can impact the corrosion resistance of concrete. In concrete that is reinforced with steel, the corrosion process can be initiated if the carbonation happens extensively (e.g., the whole of the concrete cover is carbonated) and intensively (e.g., a significant proportion of the hardened cement product is carbonated). [Concrete cover is the layer distance between the surface of reinforcement and the outer surface of the concrete.]

Q: What are the factors that influence carbon uptake?

A: The intensity of carbon uptake depends on four major factors: the climate, the types and properties of cement-based products used, the composition of binders (cement type) used, and the geometry and exposure condition of the structure.

In regard to climate, the humidity and temperature affect the carbon uptake rate. In very low or very high humidity conditions, the carbon uptake process is slowed. High temperatures speed the process. The local atmosphere’s carbon dioxide concentration can affect the carbon uptake rate. For example, in urban areas, carbon uptake is an order of magnitude faster than in suburban areas.

The types and properties of cement-based products have a large influence on the rate of carbon uptake. For example, mortar (consisting of water, cement, and fine aggregates) carbonates two to four times faster than concrete (consisting of water, cement, and coarse and fine aggregates) because of its more porous structure.The carbon uptake rate of dry-cast concrete masonry units is higher than wet-cast for the same reason. In structural concrete, the process is made slower as mechanical properties are improved and the density of the hardened products’ structure increases.

Lastly, a structure’s surface area-to-volume ratio and exposure to air and water can have ramifications for its rate of carbonation. When cement-based products are covered, carbonation may be slowed or stopped. Concrete that is exposed to fresh air while being sheltered from rain can have a larger carbon uptake compared to cement-based products that are painted or carpeted. Additionally, cement-based elements with large surface areas, like thin concrete structures or mortar layers, allow uptake to progress more extensively.

Q: What is the role of carbon uptake in the carbon neutrality of concrete, and how should architects and engineers account for it when designing for specific applications?

A: Carbon uptake is a part of the life cycle of any cement-based products that should be accounted for in carbon footprint calculations. Our evaluation shows the U.S. pavement network can sequester 5.8 million metric tons of CO2, of which 52 percent will be sequestered when the demolished concrete is stockpiled at its end of life.

From one concrete structure to another, the percentage of emissions sequestered may vary. For instance, concrete bridges tend to have a lower percentage versus buildings constructed with concrete masonry. In any case, carbon uptake can influence the life cycle environmental performance of concrete.

At the MIT Concrete Sustainability Hub, we have developed a calculator to enable construction stakeholders to estimate the carbon uptake of concrete structures during their use and end-of-life phases.

Looking toward the future, carbon uptake’s role in the carbon neutralization of cement-based products could grow in importance. While caution should be taken in regards to uptake when reinforcing steel is embedded in concrete, there are opportunities for different stakeholders to augment carbon uptake in different cement-based products.

Architects can influence the shape of concrete elements to increase the surface area-to-volume ratio (e.g., making “waffle” patterns on slabs and walls, or having several thin towers instead of fewer large ones on an apartment complex). Concrete manufacturers can adjust the binder type and quantity while delivering concrete that meets performance requirements. Finally, industrial ecologists and life-cycle assessment practitioners need to work on the tools and add-ons to make sure the impact of carbon is well captured when assessing the potential impacts of cement-based products in buildings and infrastructure systems.

Currently, the cement and concrete industry is working with tech companies as well as local, state, and federal governments to lower and subsidize the code of carbon capture sequestration and neutralization. Accelerating carbon uptake where reasonable could be an additional lever to neutralize the carbon emissions of the concrete value chain.

Carbon uptake is one more piece of the puzzle that makes concrete a sustainable choice for building in many applications. The sustainability and resilience of the future built environment lean on the use of concrete. There is still much work to be done to truly build sustainably, and understanding carbon uptake is an important place to begin.

Source: 3 Questions: Leveraging carbon uptake to lower concrete’s carbon footprint

A shot in the arm

- Posted in Uncategorized by

Biologics, a class of therapeutics derived from living organisms, offer enormous advantages to patients battling challenging diseases and disorders. Treatments based on biologics can boost the immune system to stem attacks from infections or target specific pathways to block the formation of tumors.

“These drugs, which have been around for just the last 20 years, do magic,” says Amir Erfani, a postdoc in the MIT Department of Chemical Engineering (ChemE). “They can save millions of people around the world.”

But the unrivaled effectiveness of biologics comes at a cost. They can be difficult to administer, often demanding time-consuming intravenous (IV) infusions at clinics. Whether for patients struggling with life-threatening or lifelong conditions, the prospect of spending hours away from home, every few weeks, can prove extremely daunting.

Now, new work from an MIT team in collaboration with the Merck pharmaceutical company, which funded the research, suggests a practical solution for surmounting the difficulty of administering biologics. In a recent paper published in Advanced Healthcare Materials, these researchers describe a hydrogel platform for delivering monoclonal antibodies (MABs) — one type of biologic — through subcutaneous injection.

Erfani is lead author of the paper. Co-authors include Jeremy M. Schieferstein, a postdoc in ChemE at the time of the study, now senior scientist at Elektrofi; Apoorv Shanker, a postdoc in ChemE; Paula Hammond, Institute Professor and head of ChemE; and Patrick S. Doyle, the Robert T. Haslam (1911) Professor of Chemical Engineering, as well as Merck researchers.

“This is an important milestone,” says Doyle. “We are on the route to transforming the next generation of treatment with monoclonal antibodies and other kinds of therapeutics.”

Higher-test antibodies

Unlike most conventional drugs that are formulated chemically and comprised of small molecules, biologics are sprawling and unruly chains of proteins, sugars, and DNA segments, genetically engineered from living sources. These giant organic molecules don’t lend themselves to the kind of neat, dense packaging typically found in synthesized pills or injectable suspensions.

Take the MAB on which Erfani and Doyle focused, called pembrolizumab, or pembro for short. This unique antibody binds to a receptor associated with mediating immune responses to tumor cells, and is used in a range of sometimes intractable cancers. Pembro is normally administered in a dilute solution by IV over several hours to achieve the kind of concentrations required to be effective. (Merck has patented this formulation of the drug as Keytruda.)

“When you try to concentrate existing formulations, the molecules’ viscosity grows astronomically,” says Doyle. “At a critical point, they start almost feeling for each other, and interact to become a kind of paste.” Forced together, pembro molecules become unstable and change their structure, undermining their therapeutic properties.

So Doyle’s team of researchers in the Soft Matter Engineering Group set about creating a version of pembro that could be injected at high enough concentrations to be effective, but in small enough volumes to be administered comfortably and swiftly just under the skin (the second preference of most patients and clinicians, after swallowing a pill). With expertise in matters of flow, microfluidics, and pharmaceutical formulations, the lab was well-equipped for the challenge.

Go with the flow

“This MAB is super sticky and delicate, and we needed to find some way to get its molecules moving freely inside a syringe,” says Erfani. “The insight we had was to use hydrogel particles, made from sugar-based, water-loving biopolymers that provide a nice environment where a protein is going to be very happy,” says Doyle. “We’d used these for other applications, and I knew if we could make them small enough, they could get through a needle without clogging it.” 

The researchers knew from toxicity literature that their hydrogel capsules would be biocompatible, and would behave in a syringe. “The hydrogel particles are squeezy, and can roll over each other, and actually flow,” says Erfani. It looked like clear sailing to incorporate pembro molecules at the right density for a one- to two-millimeter subcutaneous injection. But, like so much in engineering, the devil turned out to be in the details.

“It was tricky keeping the antibody intact through the fabrication process, and then ensuring it could be biologically effective as it dispersed properly under the skin,” says Doyle. Any departure from the precise formulation of the pembro integrated into the soft hydrogel capsules might render the MAB ineffective, or worse.

In a series of experiments lasting nearly five years, Doyle’s lab experimented in achieving just the right balance of features. Their studies relied on a homemade device that jets out biopolymer solution and crystals of pembro together first into the air, and then into a bath where they fuse into beads.

“We tested many variables in our design space,” says Erfani, including different concentrations of pembro, and the composition and pH of the polymer solutions. “The goal wasn’t just developing a drug in our lab, but developing a process that could be easily adapted to pharmaceutical manufacturing.” With his prior industry background developing types of MAB in stable, crystalline structure, Erfani helped push the team over the finish line. “He not only brought all this physical chemistry to the process, but he figured out the experimental design and how to execute on it,” says Doyle.

A broad platform

The researchers are now putting their pembro formulation through its paces through in vivo trials, with the aim of U.S. Food and Drug Administration approval in the next few years. But Doyle and his group have broader goals for the hydrogel platform they invented. “We believe this platform is agnostic to the MAB, which means we can get a lot of different molecules formulated to the right concentration and flowability,” he says. “That’s a big deal.”

Among the possibilities Doyle envisions are a slow, sustained release of the MAB-containing hydrogel particles — think weeks — after injection. The platform could accommodate other kinds of molecules, such as cytokines, to amplify immune response, or target specific cancer pathways. Hydrogels could also incorporate two kinds of drugs that enhance each other’s properties.

Erfani points to the potential social impacts of the platform. “Our technology holds the possibility of improving the accessibility of treatments by reducing a patient’s dependency on hospitals,” he says. Replacing IV sessions with fewer, single-shot injections would free up time in clinics for more patients, encourage greater compliance, and even lower the price of the drug, he notes. People might someday administer their own injections at home.

Erfani is especially intrigued by the notion of moving many more drugs to this platform, including some that died early in development. “There are drugs companies that gave up because they couldn’t be formulated in high enough concentrations,” he says. “Wouldn’t it be super exciting to repurpose a lifesaving drug and bring it back to market?”

Source: A shot in the arm

New nanoparticles can perform gene editing in the lungs

- Posted in Uncategorized by

Engineers at MIT and the University of Massachusetts Medical School have designed a new type of nanoparticle that can be administered to the lungs, where it can deliver messenger RNA encoding useful proteins.

With further development, these particles could offer an inhalable treatment for cystic fibrosis and other diseases of the lung, the researchers say.

“This is the first demonstration of highly efficient delivery of RNA to the lungs in mice. We are hopeful that it can be used to treat or repair a range of genetic diseases, including cystic fibrosis,” says Daniel Anderson, a professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

In a study of mice, Anderson and his colleagues used the particles to deliver mRNA encoding the machinery needed for CRISPR/Cas9 gene editing. That could open the door to designing therapeutic nanoparticles that can snip out and replace disease-causing genes.

The senior authors of the study, which appears today in Nature Biotechnology, are Anderson; Robert Langer, the David H. Koch Institute Professor at MIT; and Wen Xue, an associate professor at the UMass Medical School RNA Therapeutics Institute. Bowen Li, a former MIT postdoc who is now an assistant professor at the University of Toronto; Rajith Singh Manan, an MIT postdoc; and Shun-Qing Liang, a postdoc at UMass Medical School, are paper’s lead authors.

Targeting the lungs

Messenger RNA holds great potential as a therapeutic for treating a variety of diseases caused by faulty genes. One obstacle to its deployment thus far has been difficulty in delivering it to the right part of the body, without off-target effects. Injected nanoparticles often accumulate in the liver, so several clinical trials evaluating potential mRNA treatments for diseases of the liver are now underway. RNA-based Covid-19 vaccines, which are injected directly into muscle tissue, have also proven effective. In many of those cases, mRNA is encapsulated in a lipid nanoparticle — a fatty sphere that protects mRNA from being broken down prematurely and helps it enter target cells.

Several years ago, Anderson’s lab set out to design particles that would be better able to transfect the epithelial cells that make up most of the lining of the lungs. In 2019, his lab created nanoparticles that could deliver mRNA encoding a bioluminescent protein to lung cells. Those particles were made from polymers instead of lipids, which made them easier to aerosolize for inhalation into the lungs. However, more work is needed on those particles to increase their potency and maximize their usefulness.

In their new study, the researchers set out to develop lipid nanoparticles that could target the lungs. The particles are made up of molecules that contain two parts: a positively charged headgroup and a long lipid tail. The positive charge of the headgroup helps the particles to interact with negatively charged mRNA, and it also help mRNA to escape from the cellular structures that engulf the particles once they enter cells.

The lipid tail structure, meanwhile, helps the particles to pass through the cell membrane. The researchers came up with 10 different chemical structures for the lipid tails, along with 72 different headgroups. By screening different combinations of these structures in mice, the researchers were able to identify those that were most likely to reach the lungs.

Efficient delivery

In further tests in mice, the researchers showed that they could use the particles to deliver mRNA encoding CRISPR/Cas9 components designed to cut out a stop signal that was genetically encoded into the animals’ lung cells. When that stop signal is removed, a gene for a fluorescent protein turns on. Measuring this fluorescent signal allows the researchers to determine what percentage of the cells successfully expressed the mRNA.

After one dose of mRNA, about 40 percent of lung epithelial cells were transfected, the researchers found. Two doses brought the level to more than 50 percent, and three doses up to 60 percent. The most important targets for treating lung disease are two types of epithelial cells called club cells and ciliated cells, and each of these was transfected at about 15 percent.

“This means that the cells we were able to edit are really the cells of interest for lung disease,” Li says. “This lipid can enable us to deliver mRNA to the lung much more efficiently than any other delivery system that has been reported so far.”

The new particles also break down quickly, allowing them to be cleared from the lung within a few days and reducing the risk of inflammation. The particles could also be delivered multiple times to the same patient if repeat doses are needed. This gives them an advantage over another approach to delivering mRNA, which uses a modified version of harmless adenoviruses. Those viruses are very effective at delivering RNA but can’t be given repeatedly because they induce an immune response in the host.

“This achievement paves the way for promising therapeutic lung gene delivery applications for various lung diseases,” says Dan Peer, director of the Laboratory of Precision NanoMedicine at Tel Aviv University, who was not involved in the study. “This platform holds several advantages compared to conventional vaccines and therapies, including that it’s cell-free, enables rapid manufacturing, and has high versatility and a favorable safety profile.”

To deliver the particles in this study, the researchers used a method called intratracheal instillation, which is often used as a way to model delivery of medication to the lungs. They are now working on making their nanoparticles more stable, so they could be aerosolized and inhaled using a nebulizer.

The researchers also plan to test the particles to deliver mRNA that could correct the genetic mutation found in the gene that causes cystic fibrosis, in a mouse model of the disease. They also hope to develop treatments for other lung diseases, such as idiopathic pulmonary fibrosis, as well as mRNA vaccines that could be delivered directly to the lungs.

The research was funded by Translate Bio, the National Institutes of Health, the Leslie Dan Faculty of Pharmacy startup fund, a PRiME Postdoctoral Fellowship from the University of Toronto, the American Cancer Society, and the Cystic Fibrosis Foundation.

Source: New nanoparticles can perform gene editing in the lungs

School of Engineering welcomes new faculty

- Posted in Uncategorized by

The School of Engineering is welcoming 11 new members of its faculty across six of its academic departments and institutes. This new cohort of faculty members, who have either recently started their roles at MIT or will start their new roles within the next year, conduct research across a diverse range of disciplines. Their areas of expertise include semiconducting materials, human health in space, physics-informed deep learning, materials for nuclear energy, and using machine learning to address challenges in agriculture and climate change, to name a few.

“I warmly welcome this group of incredibly talented new faculty to our engineering community at MIT,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “The work each of them is doing holds tremendous potential to drive solutions for many of the challenges our world faces. Their contributions as researchers and educators will have lasting impact on the school community. I look forward to seeing them thrive as they settle into their new roles.”

A number of these new faculty members conduct research at the intersection of computing and other engineering fields. New faculty members Sara Beery, Priya Donti, Ericmoore Jossou, and Sherrie Wang were hired as part of a shared faculty search focused on computing for the health of the planet with the MIT Stephen A. Schwarzman College of Computing. Among the new faculty members, eight total have positions with both the School of Engineering and the college: six new faculty from the Department of Electrical Engineering and Computer Science (EECS), which reports to both the school and college; one shared between the Department of Mechanical Engineering and the Institute for Data, Systems, and Society, which reports to the college; and one shared between the Department of Nuclear Science and Engineering and EECS. 

Katya Arquilla joined MIT’s Department of Aeronautics and Astronautics (AeroAstro) as an assistant professor in June 2022. She serves as the Boeing Career Development Professor in Aeronautics and Astronautics. In her research, she monitors humans to quantify and augment their health and performance in extreme operational environments. She specializes in bioastronautics, psychophysiological monitoring, wearable sensor systems, and human-computer interaction. Previously, she was a postdoc working with Professor Julie Shah in the Interactive Robotics Group in AeroAstro. There, she worked on integrating psychophysiological monitoring — connecting physiological signals to psychological state — into human-robot interactions as a measure of psychological safety and trust. Arquilla earned a BS in astrophysics at Rice University and an MS and PhD in aerospace engineering from the University of Colorado at Boulder. Before her graduate studies, she taught math and physics to middle and high school students at YES Prep Public Schools, a charter school for students in Houston’s underserved communities.

Sara Beery will join the Department of EECS as an assistant professor in September. She is currently a visiting faculty researcher at Google Research. Beery’s work focuses on building computer vision methods that enable global-scale environmental and biodiversity monitoring across data modalities and tackling real-world challenges, including strong spatiotemporal correlations, imperfect data quality, fine-grained categories, and long-tailed distributions. She collaborates with nongovernmental organizations and government agencies to deploy her methods worldwide and works toward increasing the diversity and accessibility of academic research in artificial intelligence through interdisciplinary capacity-building and education. Beery earned a BS in electrical engineering and mathematics from Seattle University and a PhD in computing and mathematical sciences from Caltech, where she was honored with the Amori Prize for her outstanding dissertation.

Joseph Casamento will join MIT’s Department of Materials Science and Engineering (DMSE) as an assistant professor in January 2024. Casamento is currently a postdoc at Penn State University. He conducts research on nitride semiconducting materials at the Center for 3D Ferroelectric Microelectronics (3DFeM), a U.S. Department of Energy Energy Frontier Research Center. This work has applications in the development of next-generation energy-efficient electronic, photonic, and acoustic devices. Casamento received a BS in materials science and engineering at the University of Michigan, and an MS and PhD in material science and engineering at Cornell University.

Christina Delimitrou joined the Department of EECS as an assistant professor in September 2022 and was promoted to associate professor without tenure in January. Previously, she served as an assistant professor at Cornell University. Her main interests are in computer architecture and computer systems. Specifically, she is one of the first researchers to apply machine learning techniques to cloud systems problems, such as resource management and scheduling. She is also working on data-center server design, hardware acceleration, and distributed system debugging. Delimitrou was named an Alfred P. Sloan Research Fellow and honored with two Google Faculty Research Awards, a Microsoft Research Faculty Fellowship, an IEEE TCCA Young Computer Architect Award, an Intel Rising Star Award, and a Facebook Faculty Research Award. She earned a BS in electrical and computer engineering from the National Technical University of Athens and an MS and PhD in electrical engineering, both from Stanford University.

Priya Donti will join the Department of EECS as an assistant professor in September. Currently a part of the Jacobs Technion-Cornell Institute’s Runway Startup Postdoc Program, she is working to build Climate Change AI, a global nonprofit that she co-founded in 2019. Her work focuses on physics-informed deep learning for forecasting, optimization, and control in high-renewables power grids. Donti earned a BS in computer science and mathematics from Harvey Mudd College and a PhD in computer science and public policy from Carnegie Mellon University. She was honored with the MIT Technology Review Innovators Under 35 Award and the ACM SIGEnergy Doctoral Dissertation Award. She was also honored as a U.S. Department of Energy Computational Science Graduate Fellow, Siebel Scholar, NSF Graduate Research Fellow, and Thomas J. Watson Fellow.

Gabriele Farina will join the Department of EECS as an assistant professor in September. Farina currently serves as a research scientist at Meta in the Facebook AI Research group. Farina’s work lies at the intersection of artificial intelligence, computer science, operations research, and economics. Specifically, he focuses on learning and optimization methods for sequential decisio­­­n-making and convex-concave saddle point problems, with applications to equilibrium finding in games. Farina also studies computational game theory and recently served as co-author on a Science study about combining language models with strategic reasoning. He is a recipient of a NeurIPS Best Paper Award and was a Facebook Fellow in economics and computer science. Farina earned a BS in automation and control engineering from Politecnico di Milano and is currently finishing up his PhD studies in computer science from Carnegie Mellon University.

Ericmoore Jossou will join MIT as an assistant professor in a shared position between the departments of Nuclear Science and Engineering and EECS in July. He is currently an assistant scientist at the Brookhaven National Laboratory, a U.S. Department of Energy-affiliated lab which conducts research in nuclear and high-energy physics, energy science and technology, environmental and bioscience, nanoscience, and national security. His research at MIT will focus on understanding the processing-structure-properties correlation of materials for nuclear energy applications through advanced experiments, multiscale simulations, and data science. Jossou earned a BS in chemistry from Ahmadu Bello University, Zaria and a master’s degree in materials science and engineering at the African University of Science and Technology, Abuja. He obtained his PhD in mechanical engineering with a specialization in materials science from the University of Saskatchewan. Jossou received the Petroleum Technology Development Fund scholarship in 2008, the African Development Bank scholarship in 2012, and the International Dean’s scholarship for doctoral studies at the University of Saskatchewan in 2015.

Laura Lewis PhD ’14 joined the Department of EECS and the Institute for Medical Engineering and Science (IMES) as associate professor without tenure in February. She has been appointed as the Athinoula A. Martinos Associate Professor of IMES and EECS. Lewis is a principal investigator in the Research Laboratory of Electronics at MIT, as well as an associate faculty member at the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital. Previously, she served as assistant professor of biomedical engineering at Boston University. As a neuroscientist and engineer, Lewis focuses on neuroimaging approaches that better map brain function, with a particular focus on sleep. She is developing computational and signal processing approaches for neuroimaging data and applying these tools to study how neural computation is dynamically modulated across sleep, wake, attentional, and affective states. Lewis earned her BSc at McGill University and her PhD in neuroscience at MIT. She has been honored with the Society for Neuroscience Peter and Patricia Gruber International Research Award, the One Mind Rising Star Award, the 1907 Trailblazer Award, the Sloan Fellowship, the Searle Scholar Award, the McKnight Scholar Award, and the Pew Biomedical Scholar Award.

Kuikui Liu will join the Department of EECS as an assistant professor in September. He is currently a Foundations of Data Science Institute postdoc at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). His research interests are in the design and analysis of Markov chains, with applications to statistical physics, high-dimensional geometry, and statistics. To study these complex stochastic dynamics, he develops and uses mathematical tools from fields such as high-dimensional expanders, geometry of polynomials, algebraic combinatorics, statistical physics, and more. He earned a BS in mathematics and computer science, an MS in computer science, and a PhD in computer science, all from the University of Washington. He was the co-recipient of a best paper award at STOC 2019 and the William Chan Memorial Dissertation Award.

Lonnie Petersen joined MIT’s Department of AeroAstro as an assistant professor in September 2022. She serves as the Charles Stark Draper Career Development Professor of Aeronautics and Astronautics. Petersen also joined the core faculty of IMES. Previously, she served as an assistant professor in mechanical and aerospace engineering at the University of California at San Diego. As both a medical doctor and engineer, Petersen’s work bridges these two worlds. She holds a PhD in gravitational physiology, and her work is focused on fluid and perfusion regulation, specifically focusing on the brain. Applications include space and aviation physiology, including countermeasure development for long-duration spaceflight and exploration class missions. Additionally, she works on the application of knowledge gained in space for life on earth, including translation of technology and human-hardware interaction. Petersen earned a BA in physics, math, and chemistry at Frederiksberg College. She received her MS in space and aviation physiology from the University of Copenhagen. Petersen obtained an MD and PhD in gravitational physiology and space medicine from the University of Copenhagen. She has completed postdoctoral fellowships at Toyo University in Tokyo and UC San Diego School of Medicine. In addition to emergency medicine, Petersen has served in pre-hospital care and remote areas, including Greenland. 

Sherrie Wang will join MIT as an assistant professor in a shared position between the Department of Mechanical Engineering and the Institute for Data, Systems, and Society in April 2023. She will serve as the Brit (1961) & Alex (1949) d’Arbeloff Career Development Professor in Mechanical Engineering. Her research uses novel data and computational algorithms to monitor our planet and enable sustainable development. Her primary application areas are improving agricultural management and mitigating climate change, especially in low- or middle-income regions of the world. She frequently works with satellite imagery, crowdsourced data, and other spatial data. Due to the scarcity of ground truth data in many applications and noisiness of real-world data in general, her methodological work focuses on developing machine learning tools that work well within these constraints. Prior to MIT, Wang was a Ciriacy-Wantrup Postdoctoral Fellow at the University of California at Berkeley, hosted by the Global Policy Lab. She earned a BA in biomedical engineering from Harvard University and an MS and PhD in computational and mathematical engineering from Stanford University.

Source: School of Engineering welcomes new faculty

Boosting passenger experience and increasing connectivity at the Hong Kong International Airport

- Posted in Uncategorized by

Recently, a cohort of 36 students from MIT and universities across Hong Kong came together for the MIT Entrepreneurship and Maker Skills Integrator (MEMSI), an intense two-week startup boot camp hosted at the MIT Hong Kong Innovation Node.

“We’re very excited to be in Hong Kong,” said Professor Charles Sodini, LeBel Professor of Electrical Engineering and faculty director of the Node. “The dream always was to bring MIT and Hong Kong students together.”

Students collaborated on six teams to meet real-world industry challenges through action learning, defining a problem, designing a solution, and crafting a business plan. The experience culminated in the MEMSI Showcase, where each team presented its process and unique solution to a panel of judges. “The MEMSI program is a great demonstration of important international educational goals for MIT,” says Professor Richard Lester, associate provost for international activities and chair of the Node Steering Committee at MIT. “It creates opportunities for our students to solve problems in a particular and distinctive cultural context, and to learn how innovations can cross international boundaries.” 

Meeting an urgent challenge in the travel and tourism industry

The Hong Kong Airport Authority (AAHK) served as the program’s industry partner for the third consecutive year, challenging students to conceive innovative ideas to make passenger travel more personalized from end-to-end while increasing connectivity. As the travel industry resuscitates profitability and welcomes crowds back amidst ongoing delays and labor shortages, the need for a more passenger-centric travel ecosystem is urgent.

The airport is the third-busiest international passenger airport and the world’s busiest cargo transit. Students experienced an insider’s tour of the Hong Kong International Airport to gain on-the-ground orientation. They observed firsthand the complex logistics, possibilities, and constraints of operating with a team of 78,000 employees who serve 71.5 million passengers with unique needs and itineraries.

Throughout the program, the cohort was coached and supported by MEMSI alumni, travel industry mentors, and MIT faculty such as Richard de Neufville, professor of engineering systems.

The mood inside the open-plan MIT Hong Kong Innovation Node was nonstop energetic excitement for the entire program. Each of the six teams was composed of students from MIT and from Hong Kong universities. They learned to work together under time pressure, develop solutions, receive feedback from industry mentors, and iterate around the clock.

“MEMSI was an enriching and amazing opportunity to learn about entrepreneurship while collaborating with a diverse team to solve a complex problem,” says Maria Li, a junior majoring in computer science, economics, and data science at MIT. “It was incredible to see the ideas we initially came up with as a team turn into a single, thought-out solution by the end.”

Unsurprisingly given MIT’s focus on piloting the latest technology and the tech-savvy culture of Hong Kong as a global center, many team projects focused on virtual reality, apps, and wearable technology designed to make passengers’ journeys more individualized, efficient, or enjoyable.

After observing geospatial patterns charting passengers’ movement through an airport, one team realized that many people on long trips aim to meet fitness goals by consciously getting their daily steps power walking the expansive terminals. The team’s prototype, FitAir, is a smart, biometric token integrated virtual coach, which plans walking routes within the airport to promote passenger health and wellness.

Another team noted a common frustration among frequent travelers who manage multiple mileage rewards program profiles, passwords, and status reports. They proposed AirPoint, a digital wallet that consolidates different rewards programs and presents passengers with all their airport redemption opportunities in one place.

“Today, there is no loser,” said Vivian Cheung, chief operating officer of AAHK, who served as one of the judges. “Everyone is a winner. I am a winner, too. I have learned a lot from the showcase. Some of the ideas, I believe, can really become a business.”

Cheung noted that in just 12 days, all teams observed and solved her organization’s pain points and successfully designed solutions to address them.

More than a competition

Although many of the models pitched are inventive enough to potentially shape the future of travel, the main focus of MEMSI isn’t to act as yet another startup challenge and incubator.

“What we’re really focusing on is giving students the ability to learn entrepreneurial thinking,” explains Marina Chan, senior director and head of education at the Node. “It’s the dynamic experience in a highly connected environment that makes being in Hong Kong truly unique. When students can adapt and apply theory to an international context, it builds deeper cultural competency.”

From an aerial view, the boot camp produced many entrepreneurs in the making and lasting friendships, and respect for other cultural backgrounds and operating environments.

“I learned the overarching process of how to make a startup pitch, all the way from idea generation, market research, and making business models, to the pitch itself and the presentation,” says Arun Wongprommoon, a senior double majoring in computer science and engineering and linguistics.  “It was all a black box to me before I came into the program.”

He said he gained tremendous respect for the startup world and the pure hard work and collaboration required to get ahead.

Spearheaded by the Node, MEMSI is a collaboration among the MIT Innovation Initiative, the Martin Trust Center for Entrepreneurship, the MIT International Science and Technology Initiatives, and Project Manus. Learn more about applying to MEMSI.

Source: Boosting passenger experience and increasing connectivity at the Hong Kong International Airport

New algorithm keeps drones from colliding in midair

- Posted in Uncategorized by

When multiple drones are working together in the same airspace, perhaps spraying pesticide over a field of corn, there’s a risk they might crash into each other.

To help avoid these costly crashes, MIT researchers presented a system called MADER in 2020. This multiagent trajectory-planner enables a group of drones to formulate optimal, collision-free trajectories. Each agent broadcasts its trajectory so fellow drones know where it is planning to go. Agents then consider each other’s trajectories when optimizing their own to ensure they don’t collide.

But when the team tested the system on real drones, they found that if a drone doesn’t have up-to-date information on the trajectories of its partners, it might inadvertently select a path that results in a collision. The researchers revamped their system and are now rolling out Robust MADER, a multiagent trajectory planner that generates collision-free trajectories even when communications between agents are delayed.

“MADER worked great in simulations, but it hadn’t been tested in hardware. So, we built a bunch of drones and started flying them. The drones need to talk to each other to share trajectories, but once you start flying, you realize pretty quickly that there are always communication delays that introduce some failures,” says Kota Kondo, an aeronautics and astronautics graduate student.

The algorithm incorporates a delay-check step during which a drone waits a specific amount of time before it commits to a new, optimized trajectory. If it receives additional trajectory information from fellow drones during the delay period, it might abandon its new trajectory and start the optimization process over again.

When Kondo and his collaborators tested Robust MADER, both in simulations and flight experiments with real drones, it achieved a 100 percent success rate at generating collision-free trajectories. While the drones’ travel time was a bit slower than it would be with some other approaches, no other baselines could guarantee safety.

“If you want to fly safer, you have to be careful, so it is reasonable that if you don’t want to collide with an obstacle, it will take you more time to get to your destination. If you collide with something, no matter how fast you go, it doesn’t really matter because you won’t reach your destination,” Kondo says.  

Kondo wrote the paper with Jesus Tordesillas, a postdoc; Parker C. Lusk, a graduate student; Reinaldo Figueroa, Juan Rached, and Joseph Merkel, MIT undergraduates; and senior author Jonathan P. How, the Richard C. Maclaurin Professor of Aeronautics and Astronautics and a principal investigator in the Laboratory for Information and Decision Systems (LIDS). The research will be presented at the International Conference on Robots and Automation.

Planning trajectories

MADER is an asynchronous, decentralized, multiagent trajectory-planner. This means that each drone formulates its own trajectory and that, while all agents must agree on each new trajectory, they don’t need to agree at the same time. This makes MADER more scalable than other approaches, since it would be very difficult for thousands of drones to agree on a trajectory simultaneously. Due to its decentralized nature, the system would also work better in real-world environments where drones may fly far from a central computer.

With MADER, each drone optimizes a new trajectory using an algorithm that incorporates the trajectories it has received from other agents. By continually optimizing and broadcasting their new trajectories, the drones avoid collisions.

But perhaps one agent shared its new trajectory several seconds ago, but a fellow agent didn’t receive it right away because the communication was delayed. In real-world environments, signals are often delayed by interference from other devices or environmental factors like stormy weather. Due to this unavoidable delay, a drone might inadvertently commit to a new trajectory that sets it on a collision course.

Robust MADER prevents such collisions because each agent has two trajectories available. It keeps one trajectory that it knows is safe, which it has already checked for potential collisions. While following that original trajectory, the drone optimizes a new trajectory but does not commit to the new trajectory until it completes a delay-check step.

During the delay-check period, the drone spends a fixed amount of time repeatedly checking for communications from other agents to see if its new trajectory is safe. If it detects a potential collision, it abandons the new trajectory and starts the optimization process over again.

The length of the delay-check period depends on the distance between agents and environmental factors that could hamper communications, Kondo says. If the agents are many miles apart, for instance, then the delay-check period would need to be longer.

Completely collision-free

The researchers tested their new approach by running hundreds of simulations in which they artificially introduced communication delays. In each simulation, Robust MADER was 100 percent successful at generating collision-free trajectories, while all the baselines caused crashes.

The researchers also built six drones and two aerial obstacles and tested Robust MADER in a multiagent flight environment. They found that, while using the original version of MADER in this environment would have resulted in seven collisions, Robust MADER did not cause a single crash in any of the hardware experiments.

“Until you actually fly the hardware, you don’t know what might cause a problem. Because we know that there is a difference between simulations and hardware, we made the algorithm robust, so it worked in the actual drones, and seeing that in practice was very rewarding,” Kondo says.

Drones were able to fly 3.4 meters per second with Robust MADER, although they had a slightly longer average travel time than some baselines. But no other method was perfectly collision-free in every experiment.

In the future, Kondo and his collaborators want to put Robust MADER to the test outdoors, where many obstacles and types of noise can affect communications. They also want to outfit drones with visual sensors so they can detect other agents or obstacles, predict their movements, and include that information in trajectory optimizations.

This work was supported by Boeing Research and Technology.

Source: New algorithm keeps drones from colliding in midair

Fieldwork class examines signs of climate change in Hawaii

- Posted in Uncategorized by

When Joy Domingo-Kameenui spent two weeks in her native Hawaii as part of MIT class 1.091 (Traveling Research Environmental eXperiences), she was surprised to learn about the number of invasive and endangered species. “I knew about Hawaiian ecology from middle and high school but wasn’t fully aware to the extent of how invasive species and diseases have resulted in many of Hawaii’s endemic species becoming threatened,” says Domingo-Kameenui.  

Domingo-Kameenui was part of a group of MIT students who conducted field research on the Big Island of Hawaii in the Traveling Research Environmental eXperiences (TREX) class offered by the Department of Civil and Environmental Engineering. The class provides undergraduates an opportunity to gain hands-on environmental fieldwork experience using Hawaii’s geology, chemistry, and biology to address two main topics of climate change concern: sulfur dioxide (SO2) emissions and forest health.

“Hawaii is this great system for studying the effects of climate change,” says David Des Marais, the Cecil and Ida Green Career Development Professor of Civil and Environmental Engineering and lead instructor of TREX. “Historically, Hawaii has had occasional mild droughts that are related to El Niño, but the droughts are getting stronger and more frequent. And we know these types of extreme weather events are going to happen worldwide.”

Climate change impacts on forests

The frequency and intensity of extreme events are also becoming more of a problem for forests and plant life. Forests have a certain distribution of vegetation and as you get higher in elevation, the trees gradually turn into shrubs, and then rock. Trees don’t grow above the timberline, where the temperature and precipitation changes dramatically at the high elevations. “But unlike the Sierra Nevada or the Rockies, where the trees gradually change as you go up the mountains, in Hawaii, they gradually change, and then they just stop,” says Des Marais.

“Why this is an interesting model for climate change,” explains Des Marais, “is that line where trees stop [growing] is going to move, and it’s going to become more unstable as the trade winds are affected by global patterns of air circulation, which are changing because of climate change.”

The research question that Des Marais asks students to explore — How is the Hawaiian forest going to be affected by climate change? — uses Hawaii as a model for broader patterns in climate change for forests.

To dive deeper into this question, students trekked up the mountain taking ground-level measurements of canopy cover with a camera app on their cellphones, estimating how much tree coverage blankets the sky when looking up, and observing how the canopy cover thins until they see no tree coverage at all as they go further up the mountain. Drones also flew above the forest to measure chlorophyll and how much plant matter remains. And then satellite data products from NASA and the European Space Agency were used to measure the distribution of chlorophyll, climate, and precipitation data from space.

They also worked directly with community stakeholders at three locations around the island to access the forests and use technology to assess the ecology and biodiversity challenges. One of those stakeholders was the Kamehameha Schools Natural and Cultural Ecosystems Division, whose mission is to preserve the land and manage it in a sustainable way. Students worked with their plant biologists to help address and think about what management decisions will support the future health of their forests.

“Across the island, rising temperatures and abnormal precipitation patterns are the main drivers of drought, which really has significant impacts on biodiversity, and overall human health,” says Ava Gillikin, a senior in civil and environmental engineering.

Gillikin adds that “a good proportion of the island’s water system relies on rainwater catchment, exposing vulnerabilities to fluctuations in rain patterns that impact many people’s lives.”

Deadly threats to native plants

The other threats to Hawaii’s forests are invasive species causing ecological harm, from the prevalence of non-indigenous mosquitoes leading to increases in avian malaria and native bird death that threaten the native ecosystem, to a plant called strawberry guava.

Strawberry guava is taking over Hawaii’s native ōhiʻa trees, which Domingo-Kameenui says is also contributing to Hawaii’s water production. “The plants absorb water quickly so there’s less water runoff for groundwater systems.”

A fungal pathogen is also infecting native ōhiʻa trees. The disease, called rapid ʻohiʻa death (ROD), kills the tree within a few days to weeks. The pathogen was identified by researchers on the island in 2014 from the fungal genus, Ceratocystis. The fungal pathogen was likely carried into the forests by humans on their shoes, or contaminated tools, gear, and vehicles traveling from one location to another. The fungal disease is also transmitted by beetles that bore into trees and create a fine powder-like dust. This dust from an infected tree is then mixed with the fungal spores and can easily spread to other trees by wind, or contaminated soil.

For Gillikin, seeing the effects of ROD in the field highlighted the impact improper care and preparation can have on native forests. “The ‘ohi’a tree is one of the most prominent native trees, and ROD can kill the trees very rapidly by putting a strain on its vascular system and preventing water from reaching all parts of the tree,” says Gillikin.

Before entering the forests, students sprayed their shoes and gear with ethanol frequently to prevent the spread.

Uncovering chemical and particle formation

A second research project in TREX studied volcanic smog (vog) that plagues the air, making visibility problematic at times and causing a lot of health problems for people in Hawaii. The active Kilauea volcano releases SO2 into the atmosphere. When the SO2 mixes with other gasses emitted from the volcano and interacts with sunlight and the atmosphere, particulate matter forms.

Students in the Kroll Group, led by Jesse Kroll, professor of civil and environmental engineering and chemical engineering, have been studying SO2 and particulate matter over the years, but not the chemistry directly in how those chemical transformations occur.

“There's a hypothesis that there is a functional connection between the SO2 and particular matter, but that's never been directly demonstrated,” says Des Marais.

Testing that hypothesis, the students were able to measure two different sizes of particulate matter formed from the SO2 and develop a model to show how much vog is generated downstream of the volcano.

They spent five days at two sites from sunrise to late morning measuring particulate matter formation as the sun comes up and starts creating new particles. Using a combination of data sources for meteorology, such as UV index, wind speed, and humidity, the students built a model that demonstrates all the pieces of an equation that can calculate when new particles are formed.

“You can build what you think that equation is based on first-principle understanding of the chemical composition, but what they did was measured it in real time with measurements of the chemical reagents,” says Des Marias.

The students measured what was going to catalyze the chemical reaction of particulate matter — for instance, things like sunlight and ozone — and then calculated numbers to the outputs.

“What they found, and what seems to be happening, is that the chemical reagents are accumulating overnight,” says Des Marais. “Then as soon as the sun rises in the morning all the transformation happens in the atmosphere. A lot of the reagents are used up and the wind blows everything away, leaving the other side of the island with polluted air,” adds Des Marais.

“I found the vog particle formation fieldwork a surprising research learning,” adds Domingo-Kameenui who did some atmospheric chemistry research in the Kroll Group. “I just thought particle formation happened in the air, but we found wind direction and wind speed at a certain time of the day was extremely important to particle formation. It’s not just chemistry you need to look at, but meteorology and sunlight,” she adds.

Both Domingo-Kameenui and Gillikin found the fieldwork class an important and memorable experience with new insight that they will carry with them beyond MIT.  

How Gillikin approaches fieldwork or any type of community engagement in another culture is what she will remember most. “When entering another country or culture, you are getting the privilege to be on their land, to learn about their history and experiences, and to connect with so many brilliant people,” says Gillikin. “Everyone we met in Hawaii had so much passion for their work, and approaching those environments with respect and openness to learn is what I experienced firsthand and will take with me throughout my career.”

Source: Fieldwork class examines signs of climate change in Hawaii

New additives could turn concrete into an effective carbon sink

- Posted in Uncategorized by

Despite the many advantages of concrete as a modern construction material, including its high strength, low cost, and ease of manufacture, its production currently accounts for approximately 8 percent of global carbon dioxide emissions.

Recent discoveries by a team at MIT have revealed that introducing new materials into existing concrete manufacturing processes could significantly reduce this carbon footprint, without altering concrete’s bulk mechanical properties.

The findings are published today in the journal PNAS Nexus, in a paper by MIT professors of civil and environmental engineering Admir Masic and Franz-Josef Ulm, MIT postdoc Damian Stefaniuk and doctoral student Marcin Hajduczek, and James Weaver from Harvard University’s Wyss Institute.

After water, concrete is the world’s second most consumed material, and represents the cornerstone of modern infrastructure. During its manufacturing, however, large quantities of carbon dioxide are released, both as a chemical byproduct of cement production and in the energy required to fuel these reactions. 

Approximately half of the emissions associated with concrete production come from the burning of fossil fuels such as oil and natural gas, which are used to heat up a mix of limestone and clay that ultimately becomes the familiar gray powder known as ordinary Portland cement (OPC). While the energy required for this heating process could eventually be substituted with electricity generated from renewable solar or wind sources, the other half of the emissions is inherent in the material itself: As the mineral mix is heated to temperatures above 1,400 degrees Celsius (2,552 degrees Fahrenheit), it undergoes a chemical transformation from calcium carbonate and clay to a mixture of clinker (consisting primarily of calcium silicates) and carbon dioxide — with the latter escaping into the air.

When OPC is mixed with water, sand, and gravel material during the production of concrete, it becomes highly alkaline, creating a seemingly ideal environment for the sequestration and long-term storage of carbon dioxide in the form of carbonate materials (a process known as carbonation). Despite this potential of concrete to naturally absorb carbon dioxide from the atmosphere, when these reactions normally occur, mainly within cured concrete, they can both weaken the material and lower the internal alkalinity, which accelerates the corrosion of the reinforcing rebar. These processes ultimately destroy the load-bearing capacity of the building and negatively impact its long-term mechanical performance. As such, these slow late-stage carbonation reactions, which can occur over timescales of decades, have long been recognized as undesirable pathways that accelerate concrete deterioration.

“The problem with these postcuring carbonation reactions,” Masic says, “is that you disrupt the structure and chemistry of the cementing matrix that is very effective in preventing steel corrosion, which leads to degradation.”

In contrast, the new carbon dioxide sequestration pathways discovered by the authors rely on the very early formation of carbonates during concrete mixing and pouring, before the material sets, which might largely eliminate the detrimental effects of carbon dioxide uptake after the material cures. 

The key to the new process is the addition of one simple, inexpensive ingredient: sodium bicarbonate, otherwise known as baking soda. In lab tests using sodium bicarbonate substitution, the team demonstrated that up to 15 percent of the total amount of carbon dioxide associated with cement production could be mineralized during these early stages — enough to potentially make a significant dent in the material’s global carbon footprint.

"It's all very exciting," Masic says, "because our research advances the concept of multifunctional concrete by incorporating the added benefits of carbon dioxide mineralization during production and casting.”

Furthermore, the resulting concrete sets much more quickly via the formation of a previously undescribed composite phase, without impacting its mechanical performance. This process thus allows the construction industry to be more productive: Form works can be removed earlier, reducing the time required to complete a bridge or building.

The composite, a mix of calcium carbonate and calcium silicon hydrate, “is an entirely new material,” Masic says. “Furthermore, through its formation, we can double the mechanical performance of the early-stage concrete.” However, he adds, this research is still an ongoing effort. “While it is currently unclear how the formation of these new phases will impact the long-term performance of concrete, these new discoveries suggest an optimistic future for the development of carbon neutral construction materials.”

While the idea of early-stage concrete carbonation is not new, and there are several existing companies that are currently exploring this approach to facilitate carbon dioxide uptake after concrete is cast into its desired shape, the current discoveries by the MIT team highlight the fact that the precuring capacity of concrete to sequester carbon dioxide has been largely underestimated and underutilized.

“Our new discovery could further be combined with other recent innovations in the development of lower carbon footprint concrete admixtures to provide much greener, and even carbon-negative construction materials for the built environment, turning concrete from being a problem to a part of a solution,” Masic says.

The research was supported by the Concrete Sustainability Hub at MIT, which has sponsorship from the Concrete Advancement Foundation and Portland Cement Association.

Source: New additives could turn concrete into an effective carbon sink

A portfolio that’s out of this world

- Posted in Uncategorized by

At age 9, Ezinne Uzo-Okoro SM ’20, PhD ’22 was preoccupied with down-to-earth problems, such as devising an alternative to her father’s messy, paper Filofax organizer, and fixing the unreliable electric service plaguing her home of Owerri, Nigeria. Could she have imagined a path-breaking, 17-year career at NASA, followed by a position as the nation’s space policy expert?

“Absolutely not,” says Uzo-Okoro. “I knew nothing about space — I wanted to be an inventor.”

While she didn’t start as a stargazer, Uzo-Okoro leveraged her curiosity, relationships, voracious appetite for work, and impatience with barriers through a journey that brought her to the center of space exploration, and now to one of the nation’s top science and technology posts as the assistant director of space policy in the White House’s Office of Science and Technology Policy. She began her career at NASA in 2004, where she spent the next 17 years building her expertise in space engineering systems and management. Along the way, she picked up three master’s degrees: one in systems engineering from Johns Hopkins University, one in space robotics from the MIT Media Lab; and in one in public administration from Harvard University. Then in 2022, Uzo-Okoro became the first, and to date only, Black woman to earn a doctorate in aeronautics and astronautics from MIT.

In 2021, Uzo-Okoro began her current position setting the nation’s priorities in space — a sprawling portfolio. On a given day, she might be dealing with the increased proliferation and threat of space debris, crewed and robotic space missions, monitoring the Earth’s climate and space weather, or the International Space Station’s retirement in seven years. It is a kaleidoscopic enterprise driven by innovation benefiting society and the global economy, and one that suits Uzo-Okoro. “This is the best job I’ve ever had,” she says.

Factories in orbit

In April 2022, after Uzo-Okoro convened experts across federal departments and agencies, the White House released a national space policy that addressed an area of burgeoning interest: the use of technologies, including robots, to make and assemble things in space.

Uzo-Okoro is responding to the rising demand among commercial, scientific, and security organizations for satellites that can be customized or manufactured quickly and cost-effectively. It takes months to develop and construct space hardware on the ground, and even longer to ensure the technology will survive on a bone-jarring rocket ride to space.

Setting up orbital factories could dramatically reduce development time and cost for satellites with the ability to sense and monitor natural or human-made disasters. The on-orbit facilities would grow an infrastructure for larger-scale space manufacturing capability, whether for research outposts and habitats on the moon, asteroid mining ventures, or missions to Mars. For all these reasons, “we need to master in-space servicing, assembly, and manufacturing,” says Uzo-Okoro.

Uzo-Okoro first began thinking about the question of space-based manufacturing after years developing small and large spacecraft with NASA. She negotiated time away from the agency to work on the problem — a move inspired by Kerri Cahoy, associate professor in the Department of Aeronautical and Astronautical Engineering (AeroAstro) at MIT, who envisioned producing spacecraft as if they were commodities such as cars. When Uzo-Okoro landed at MIT and began to pursue this idea, Cahoy advised her master’s and doctoral studies.

“Ezinne had this vision of creating a kind of automated factory on orbit, much like those on Earth that use robots to put things together,” says Cahoy. “Her approach was ‘Let’s imagine the future in space where we build important technology, and find the best way to do that.’”

For her master’s and doctoral research, Uzo-Okoro says she was basically “trying to invent the equivalent of an Amazon locker in space” — in essence, a spacecraft in orbit resembling a small refrigerator full of parts, with robot arms to put the parts together. “Inside the locker, you’ve got components for a small satellite like cameras, and spectrometers, and the robot grabs and assembles what you need, rather than creating and assembling on Earth and then launching it.”

Uzo-Okoro mocked up several versions of this robotic space locker, starting on a laboratory workbench and moving to microgravity tests on zero-G flights. “Ezinne came up with the concept, pulled a team together to test it out on a relatively limited budget, and overcame multiple challenges to make it happen — something she’s gotten very good at in her life,” says Cahoy.

Today, a new generation of student researchers plan to take the idea to the next level, with an improved, and larger, locker design. “My work proved that we could assemble a robot autonomously, rather than through human assembly,” Uzo-Okoro says. “The next step is actually putting one of these systems in space.”

A sequence of missions

Through her academic and aerospace careers, Uzo-Okoro has become the inventor of her childhood ambitions. When she left Nigeria to study computer science at Rensselaer Polytechnic Institute (RPI), she “sought the future of technology, where you could literally create anything by learning how to program.” She made first contact with NASA at an RPI job fair. “They told me they were just conducting outreach and not accepting resumes, and I told them that made no sense at all when there was a 30-minute line of talented engineers just waiting to be hired,” she laughs.

That moment served as liftoff for Uzo-Okoro. After graduation, she was hired by the Goddard Space Flight Center, and on her first day, July 12, 2004, the Cassini spacecraft inserted into Saturn’s orbit. On her first assignment, Uzo-Okoro wrote algorithms to help mission physicists identify methane, hydrogen, and nitrogen signals in the data coming home. At NASA, she worked on a series of missions (Earth observation, astrophysics, exoplanet detection, and neutron star interior composition), where she was compelled to devise innovative solutions at every turn.

“I felt like a kid in a candy store, because no matter what I did at NASA, there was always someone who knew more who could teach me,” she says. “When I realized I wanted to be the engineer responsible for a mission, I began educating myself about all parts of the spacecraft design and mission execution.” She studied mechanical and electrical engineering, and began developing and managing entire missions. At NASA, Uzo-Okoro led a small spacecraft mission design center, and was program executive of the heliophysics division.

Uzo-Okoro has not navigated her singular career without meeting obstacles. Being “first” and “only” has left its marks. “You don’t do anything difficult by working 40 hours a week, right?” she notes. She agonized about starting a family — which she ultimately did, while conducting her doctoral research at MIT.

But how did she, as a Black woman, not only survive but prosper in the notably white, notably male aerospace world? “I decided that if you’re just brimming with ideas, get help, particularly if others put up obstacles.” Uzo-Okoro doesn’t trumpet the fact that she’s the first woman to run civilian space policy for the White House. “It’s not important becoming the ‘first’ or ‘only’ one” she says. “The value any of us will bring is results.”

Uzo-Okoro is aware of the responsibility to be a role model, and is fine with leading by example. “If people try something because I’ve done it, that’s great,” she says. “I just keep putting one foot in front of the other and I encourage everybody else to do the same.”

Source: A portfolio that’s out of this world

MIT Center for Real Estate advances climate and sustainable real estate research agenda

- Posted in Uncategorized by

Real estate investors are increasingly putting sustainability at the center of their decision-making processes, given the close association between climate risk and real estate assets, both of which are location-based.

This growing emphasis comes at a time when the real estate industry is one of the biggest contributors to global warming; its embodied and operational carbon accounts for more than one-third of total carbon emissions. More stringent building decarbonization regulations are putting pressure on real estate owners and investors, who must invest heavily to retrofit their buildings or pay “carbon penalties” and see their assets lose value.

The impacts of acute and chronic climate risks — flooding, hurricanes, wildfires, droughts, sea-level rise, and extreme weather — are becoming more salient. Action across all areas of the real estate sector will be required to limit the social and economic risks arising from the climate crisis. But what business and policy levers are most effective at guiding the industry toward a more sustainable future?

The MIT Center for Real Estate (MIT/CRE) believes that the real estate industry can be a catalyst for the rapid mobilization of a global transition to a greener society. Since its inception in 1983, MIT/CRE has focused on the physical aspect of real estate, especially the development industry, and how the built environment gets produced and changed.

“The real estate industry is now at the critical moment to address the climate crisis. That is why our center initiated this major research agenda on climate and real estate two years ago,” says William Wheaton, a former director of MIT/CRE and professor emeritus in MIT’s Department of Economics, who is leading a research project on the impact of flood risks in real estate markets.

Producing high-quality research to support climate actions

The work of scientists and practitioners responding to the climate crisis is often bifurcated into mitigation or adaptation responses. Mitigation seeks to reduce the severity of the climate crisis by addressing emissions, while adaptation efforts seek to anticipate the most severe effects of the crisis and minimize potential risks to people and the built environment.

The fundamental nature of the real estate industry — location-based and capital-intensive — enables potential meaningful action for both mitigation and adaptation interventions. Exploring both avenues, MIT/CRE faculty and researchers have published academic papers exploring how chronic climate events such as extreme temperatures lower people’s expressed happiness and also disrupt habits of daily life; and how acute climate events such as hurricanes damage the built environment and decrease the financial value of real estate.

“This ongoing research production centers on industry’s imperative to take action quickly, the real losses resulting from inaction, and the potential social and business value creation for early adopters of more sustainable practices,” says Siqi Zheng, a co-author of those papers, who is the MIT/CRE faculty director and the STL Champion Professor of Urban and Real Estate Sustainability.

Building a global community of academics and industry leaders

In addition to sponsoring research and related courses, MIT/CRE has created a global network of researchers and industry leaders, centered around sharing ideas and experience to quickly scale more sustainable practices, such as building decarbonization and circular economy in real estate, as well as climate risk modeling and pricing. Collaborating with industry leaders from the investment and real estate sector, such as EY, Veris Residential, Moody’s Analytics, Colliers, Finvest, KPF, Taurus Investment Holdings, Climate Alpha, and CRE alumnus Paul Clayton SM '02, MIT/CRE blends real-world experiences and questions with applied data and projects to create a “living lab” for MIT/CRE researchers to conduct climate research.

At an inaugural symposium on climate and real estate held at MIT in December 2022, more than a dozen scholars presented papers on the intersection of real estate and sustainability, which will form the basis of a special issue on climate change and real estate in the Journal of Regional Science. A “fireside chat” connected scholars and industry leaders in practical conversations about how to use research to aid practitioners.

“Dissemination of research is critical to the success of our efforts to address climate change in the real estate industry,” says David Geltner, post-tenure professor of real estate finance and former director of  MIT/CRE, whose research group is working on climate risks and commercial real estate. “If we produce excellent research but it is cloistered in academic journals, it does no one any good. Similarly, if we do not work with collaborators to focus our research, we run the risk of investigating levers to reduce emissions that are of no use to practitioners.”

Juan Palacios, coordinator of MIT/CRE’s climate and real estate research team, emphasizes that industry collaboration creates a two-way sharing of information that refines how research is being conducted at the center and ensures that it has positive impact.

“More and more real estate investors and market players are putting sustainability at the center of their investment approach," says Zheng. “A broad range of stakeholders (investors, regulators, insurers, and the public) have started to understand that long-term profitability cannot be achieved without embracing multiple dimensions of sustainability such as climate, wealth inequality, public health, and social welfare. Because of its unique relationship with industry collaborators and its place in the MIT innovation ecosystem, MIT/CRE has a responsibility and the opportunity to champion multiple pathways toward greater sustainability in the real estate industry.”

Source: MIT Center for Real Estate advances climate and sustainable real estate research agenda

Page 1 of 5

Category

Tags